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Fast processor simulators are needed for the software development of embedded processors, for

HW/SW cosimulation systems and for pro�ling and design of application speci�c processors.

Such fast simulators can be generated based on the machine description language LISA. Using this

language to model processor architectures enables the generation of compiled simulators on various

abstraction levels, assemblers and compiler back-ends. The article discusses the requirements of

software development tools on processor models and presents the approach based on the LISA

language. Furthermore, the implementation of a retargetable environment consisting of compiled

simulator, debugger and assembler is presented. Measurements for a veri�ed, cycle-based LISA

model of the TI TMS320C62x DSP show that this approach achieves between 37x and 170x higher

simulation speed compared to a commercial simulator using a standard technique and the same

accuracy level.
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1. INTRODUCTION

In consumer electronics and telecommunications two major trends are the in-
creasing system complexity and shorter design cycles due to time-to-market con-
straints. Driven by the advances in semiconductor technology combined with the
need for new applications like digital TV and wireless broadband communications,
the amount of system functionality realized on a single chip is growing enormously.
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Higher integration and thus increasing miniaturization have led to a shift from us-
ing distributed hardware components towards heterogeneous system-on-chip (SOC)
designs [Birnbaum and Sachs 1999]. Due to the complexity introduced by such SOC
designs and time-to-market constraints, the designer's productivity has become the
vital factor for successful products. For this reason a growing amount of system
functions and signal processing algorithms is implemented in software rather then
in hardware by employing programmable processor cores.

Integrating embedded processors into a hardware environment on a single chip
raises new challenges in the area of veri�cation based on cosimulation. Among
others, many HW/SW cosimulation systems use instruction set based processor
models which are wrapped in bus-interface models but modern processor architec-
tures with complex pipelines can hardly be modeled based on this approach. For
the system-level veri�cation of real-time systems, cycle-based processor models are
required [Guerra, L. et al. 1999; Earnshaw et al. 1997]. At the same time, simu-

lation speed is critical for the veri�cation of such systems and thus an important
issue in simulator design [Olukotun et al. 1998; Hartoog, M. et al. 1997; Rowson
1994].

The principle of compiled simulation is to take advantage of a priori knowledge
and move frequent operations from simulation run-time to compile-time with the
goal of providing the highest possible simulation speed. In contrast to interpretive
simulators, this approach requires a translation step to be performed before the
simulation can be run. Algorithms used in embedded systems typically consist
of many loops and code has a high locality. Therefore, the additional e�ort of
translating the application code to a compiled simulation pays o�. This is because
frequent operations such as fetching, dispatching and decoding instruction words
and determination of operands and execution modes are performed only once at
compile-time instead of every time the respective instruction is executed at run-time
of the simulation. In �gure 1, both principles are compared for a four-stage pipelined
processor with the stages instruction fetch (IF), instruction decode (ID), operand
fetch (OF), and execute (EX). The simulation compiler produces an application
speci�c simulation program consisting of con�gured execute-operations. The IF,
ID and OF operations are eliminated at simulation run-time.

Compiled simulation of programmable DSP architectures was introduced to speed
up the instruction set simulation [�Zivojnovi�c et al. 1995] and was extended to cycle-
accurate models of pipelined processors [Pees et al. 1997]. So far, the approaches
addressing the particular requirements of compiled simulation of DSPs are targeted
to a speci�c processor architecture using a handwritten simulation compiler. How-
ever, the task of building a custom simulator for new architectures is extremely
error-prone and tedious. It is a very lengthy process of matching the simulator
to an abstract model of the processor architecture. These e�orts can be reduced
signi�cantly by using a retargetable simulator which is generated from a machine
description [Barbacci 1981; Fauth and Knoll 1993]. This article explores princi-
ples of retargetable software development tools with focus on compiled simulation.
Furthermore, an implementation based on the machine description language LISA
[�Zivojnovi�c et al. 1996; Pees et al. 1999] is presented.
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Fig. 1. Compiled vs. interpretive simulation.

2. PROCESSOR MODELS FOR SOFTWARE DEVELOPMENT TOOLS

All embedded processors like DSPs, microcontrollers and ASIPs need a complete
software development tool suite consisting of compiler, assembler, linker, simulator,
and software debugger [Flynn et al. 1999]. However the model requirements of tasks
performed by these tools are quite di�erent.

Fig. 2. Model requirements of SW development tools.

The process of generating program development tools requires information on
architecture properties and the instruction set de�nition as depicted in �gure 2. A
suitable processor description for simulator generation should provide information

consisting of the following model components.

|The memory model lists the registers and memories of the system with their
respective bit widths, ranges, and aliasing. The compiler gets information on
available registers and memory spaces. The memory con�guration is provided to
perform object code linking. During simulation, the entirety of storage elements
represents the state of the processor which can be displayed in the debugger.

|The resource model describes the available hardware resources and the resource
requirements of operations. Resources reproduce properties of hardware struc-
tures which can be accessed exclusively by one operation at a time. The instruc-
tion scheduling of the compiler depends on this information.
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|The instruction set model identi�es valid combinations of hardware operations
and admissible operands. It is expressed by the assembly syntax, instruction
word coding, and the speci�cation of legal operands and addressing modes for
each instruction. Compilers and assemblers can identify instructions based on
this model. The same information is used at the reverse process of decoding and
disassembling.

|The behavioral model abstracts the activities of hardware structures to operations
changing the state of the processor for simulation purposes. The abstraction level
of this model can range widely between the hardware implementation level and
the level of high-level language (HLL) statements.

|The timing model speci�es the activation sequence of hardware operations and
units. The instruction latency information lets the compiler �nd an appropriate
schedule and provides timing relations between operations during simulation.

3. REQUIREMENTS AND LIMITATIONS

This approach is based on processor descriptions in the LISA language which is de-
signed for the formalized description of programmable architectures, their periph-
erals, and interfaces [�Zivojnovi�c et al. 1996; Pees et al. 1999]. Its development was
motivated by the lack of approaches which are able to produce cycle-accurate mod-
els of modern embedded processor architectures (for example the TI TMS320C62xx
[Texas Instruments 1998]) and to cover the instruction-set. The language enables
designers to describe DSPs and microcontrollers with SISD, SIMD, and MIMD
execution structure and architectures with deep pipelines.

Fig. 3. Abstraction levels of LISA processor descriptions.

LISA supports di�erent description styles and models at various abstraction lev-
els. Similar to other programming languages, the user has a high degree of freedom
to describe his view of the architecture. For example, one instruction of a proces-
sor may be represented by just one operation in case of an instruction set model
(see �gure 3). In another case, it may be described by a whole sequence of op-
erations which represent the separate actions between clock cycles in case of a
phase-accurate model. Common to all models described in LISA is the underlying
zero-delay model. This means that all transitions are provided correctly at each
control step. Control steps may be clock phases, clock cycles, instruction cycles or
even higher levels as illustrated in �gure 3. Events between these control steps are
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not regarded. However, this property meets requirements of current cosimulation
environments [Synopsys 1999; Cadence 1999; Mentor Graphics 1999] on processor
simulators to be used for HW/SW co-design [Guerra, L. et al. 1999; Earnshaw et al.
1997].

4. RELATED WORK

Hardware description languages (HDLs) like VHDL or Verilog are widely used to
model and simulate processors, but mainly with the goal of developing hardware.
Using these models for cycle-based or instruction-level processor simulation has a
number of disadvantages. They cover a huge amount of hardware implementation
details which are not needed for performance evaluation, cycle-based simulation
and software veri�cation. Moreover, the description of detailed hardware structures
has a signi�cant impact on simulation speed [Olukotun et al. 1998; Rowson 1994].
Another problem is that the extraction of the instruction set is a highly complex,
manual task and some instruction set information, like e.g. assembly syntax cannot
be obtained from HDL descriptions at all. The simulator of the FlexWare project
[Paulin, P. et al. 1995] is based on a partially recon�gurable VHDL model which is
con�gured by an instruction set speci�cation using the Insulin formalism. However,
the reported simulation speed of 500-800 instructions on a Sparc 2 workstation is
rather low for application software design. An approach of translating event-driven
VHDL models into C++ simulators is reported [Krishnaswamy, V. et al. 1999], but
the achieved simulation speed-up is comparatively low and absolute speed far from
our requirements.
There are many publications on machine description languages providing instruc-

tion-set models. Most approaches using such models are addressing retargetable
code generation [Stallman 1993; Araujo et al. 1996; Liem, C. et al. 1995; Engler
1996]. Other approaches address retargetable code generation and simulation. The
approaches of Maril [Bradlee et al. 1991] as part of the Marion environment and
a system for VLIW compilation [Rau 1996] are both using latency annotation and
reservation tables for code generation. But models based on operation latencies are
too coarse for cycle-accurate simulation.
The language nML was developed at TU Berlin [Freericks 1991][Fauth et al. 1995]

and adopted in several projects [Hartoog, M. et al. 1997][Geurts, W. et al. 1996][Van
Praet, J. et al. 1996] and also extended [Rajesh and Moona 1999]. However, the
underlying instruction sequencer does not allow to describe the mechanisms of
pipelining as required for cycle-based models. The main reason is the simple un-
derlying instruction sequencer. Processors with more complex execution schemes
and instruction-level parallelism like the Texas Instruments TMS320C6x cannot be
described, even at the instruction-set level, because of the numerous combinations.
The same restriction applies to ISDL [Hadjiyiannis et al. 1997] which is very similar
to nML.
The EXPRESSION language [Halambi, A. et al. 1999] allows the cycle-accurate

processor description based on a mixed behavioral/structural approach. But no
results are published on simulation speed. The language RADL [Siska 1998] is
derived from earlier work on LISA [�Zivojnovi�c et al. 1996] and allows detailed
pipeline description, but no results are provided on realized simulators based on
this language.
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The tool set of the SimpleScalar architecture provides �ve fast simulators with
di�erent accuracy levels [Burger and Austin 1997]. But the retargetability of this
tool set is restricted to derivatives of the MIPS architecture. In the SimOS project
[Rosenblum et al. 1995; Witchel and Rosenblum 1996] processor models on three dif-
ferent abstraction levels are used to simulate complete operating systems. However,
the strategy of abstraction by direct execution requires binary code compatibility
between host and target which usually does not apply to software development for
embedded processors.
Our interest in addressing retargetable, compiled processor simulation [�Zivojnovi�c

et al. 1995] based on cycle-accurate models for a wide range of embedded processor
architectures motivated the introduction of the language LISA which is used in our
approach [�Zivojnovi�c et al. 1996; Pees et al. 1999].

5. LISA LANGUAGE

In many aspects, LISA incorporates ideas which are similar to nML. However, it
turned out from our experience with di�erent DSP architectures that signi�cant
limitations of existing machine description languages must be overcome to allow
the description of modern commercial embedded processors and the generation of
compiled cycle-accurate simulators. For this reason, LISA includes improvements
in the following areas:

|Capability to provide cycle-accurate processor models, including constructs to
specify pipelines and their mechanisms including stalls, 
ushes, operation injec-
tion, etc;

|Extension of the target class of processors including SIMD, VLIW, and super-
scalar architectures of real world processor architectures;

|Explicit language statements addressing compiled simulation techniques;

|Distinction between the detailed bit-true description of operation behavior in-
cluding side-e�ects for the simulation on the one hand and assignment to arith-
metical functions for the instruction selection task of the compiler on the other
hand which allows to freely determine the abstraction level of the behavioral part
of the processor model;

|Strong orientation on the programming languages C/C++; LISA is a framework
which encloses pure C/C++ behavioral operation description;

|Support for instruction aliasing and complex instruction coding schemes.

5.1 Language Overview

LISA descriptions are composed of resources and operations. The declared resources
represent the storage objects of the hardware architecture (e.g. registers, memories,
pipelines) which capture the state of the system. Operations are the basic objects
in LISA. They represent the designer's view of the behavior, the structure, and
the instruction set of the programmable architecture. Operation de�nitions collect
the description of di�erent properties of the system which are de�ned in several
sections1.

1A complete reference of the language is provided here: [LISA Homepage 2000].
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|The CODING section describes the binary image of the instruction word.

|The SYNTAX section describes the assembly syntax of instructions, operands,
and execution modes.

|The SEMANTICS section speci�es the transition function of the instruction.

|The BEHAVIOR and EXPRESSION sections describe components of the behav-
ioral model. During simulation, the operation behavior is executed and modi�es
the values of resources which drives the system into a new state.

|The ACTIVATION section describes the timing of other operations relative to
the current operation.

|The DECLARE section contains local declarations of identi�ers and admissible
operands or execution modes.

5.2 Resources

The resource section lists the de�nitions of all objects which are required to build
the memory model and the resource model. A sample resource section of a simpli�ed
version of the DLX processor described in [Hennessy and Patterson 1996] is shown
in example 1.

RESOURCE {

PROGRAM_COUNTER int pc;

REGISTER int R[0..31];

PROGRAM_MEMORY char pmem[0..0x100000];

DATA_MEMORY char dmem[0..0x100000];

PIPELINE pipe = { IF; ID; EX; MEM; WB };

PIPELINE_REGISTER IN pipe {

ir_t ir;

int npc, reg_a, reg_b, imm, alu;

REGISTER bool cond;

};

}

Example 1: Resource declaration of a simple DLX

The resource section begins with the keyword RESOURCE followed by (curly)
braces enclosing all object de�nitions. The de�nitions are made in C-style and
can be attributed with keywords like e.g. REGISTER, PROGRAM COUNTER, etc. These
keywords are not mandatory but they are used to classify the de�nitions in order
to con�gure the debugger display. The resource section in example 1 shows the
declaration of program counter, register �le, memories, the �ve-stage instruction
pipeline, and pipeline-registers.
The LISA language provides designated mechanisms to model pipelines of a pro-

cessor architecture. The principle of this pipeline model is that operations are ex-
plicitly assigned to pipeline stages. Thus, the respective pipelines must be de�ned
in the RESOURCE section. The declaration starts with the keyword PIPELINE,
followed by an identifying name and the list of stages. The registers de�ned in
the the PIPELINE REGISTER statement produce multiple instances for each pipeline
stage. As the pipeline is advanced, the pipeline registers are shifted as well.

5.3 Operations

Operations are formed by a header line and the operation body. The header line
consists of the keyword OPERATION, its identi�er and possible options:
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OPERATION name_of_operation [options]

{

sections. . .
}

Enclosed in braces, the operation body contains the di�erent sections which de-
scribe the properties of the instruction set model, the behavioral model and the
timing model. Operations are assigned to pipeline stages by using the keyword IN

and providing the name of the pipeline and the identi�er of the respective stage,
such as:

OPERATION name_of_operation in pipe.EX

The ACTIVATION section in the operation description allows to activate other
operations in the context of the current instruction. The activated operations are
launched as soon as the instruction enters the pipeline stage the activated operation
is assigned to. Non-assigned operations are launched in the pipeline stage of their
activation. This mechanism is called spatial activation. In �gure 4, this mechanism
is illustrated for a the instruction ADDI of the DLX processor.

Fig. 4. Spatial activation of pipeline operations.

OPERATION main {

ACTIVATION { fetch, decode }

}

OPERATION fetch IN pipe.FE {

BEHAVIOR {

ir.word = pmem[pc++];

if ( PIPELINE(pipe.MEM).cond )

npc = pc = PIPELINE(pipe.MEM).alu;

else

npc = ++pc;

}

}

OPERATION decode IN pipe.DC {

DECLARE { GROUP instruction = { i_type || r_type || j_type };}

CODING AT(pc) { 0bx[32] => instruction }

SYNTAX { instruction }

BEHAVIOR { instruction(); }

}

Example 2: Fetch and decode stages of the DLX pipeline

The respective description of the cycle-based model is shown in the code examples
2 (describing activations of the �rst cycle) and 3 (activations in the second cycle).
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OPERATION i_type IN pipe.DC {

DECLARE {

GROUP opcode = { ADDI || ADDUI || SUBI || [truncated...] };

GROUP rs1, rd = { fix_register }; }

CODING { opcode rs1 rd immediate }

SYNTAX { opcode rd "," rs1 "," immediate }

BEHAVIOR { reg_a = rs1; imm = immediate; cond = 0; }

ACTIVATION { opcode, writeback }

}

OPERATION ADDI IN pipe.EX {

CODING { 0b001000 }

SYNTAX { "ADDI" }

BEHAVIOR { alu = reg_a + imm; }

}

OPERATION writeback IN pipe.WB {

DECLARE { REFERENCE rd; }

BEHAVIOR { rd = alu; }

}

Example 3: The ADDI instruction of DLX

From operation main, the operations fetch and decode are activated (white
box) and fetch is executed (shaded box) in the same cycle. In the following cycle,
decode and then i type is executed which in turn activates the operations ADDI
and writeback. These operations execute during the next three cycles in their
respective pipeline stage. In order to introduce a forwarding mechanism to the
pipeline, the following operation can be introduced to the model:

OPERATION forwarding IN pipe.EX {

BEHAVIOR {

if ( PIPELINE(pipe.MEM).ir.itype.rd == ir.itype.sr1 )

reg_a = PIPELINE(pipe.MEM).alu;

}

}

Example 4: Forwarding mechanism

By accessing the pipelined registers such as the instruction register ir, the state
of other instructions currently in the pipeline can be obtained. In the condition of
the forwarding logic the bit �elds of operand coding �elds are compared.
Interrupts and exceptions typically may occur in every clock cycle. For this

reason, it is most useful to place the check for exceptions into the main operation:

OPERATION main {

ACTIVATION {

if ( page_fault )

{ exception_handler }

else

{ fetch, decode }

}

}

Example 5: Exception handling

In addition, the operation execution can be delayed by multiples of control steps
using the mechanisms of temporal activation which is denoted using semicolons.
All operations listed in the ACTIVATION section which are separated by commas
are launched with the same (or without) delay. Each semicolon delays following
operations by one control step. Beyond the ordinary operation execution schemes,
pipelines can be controlled explicitly by the designer.
In the BEHAVIOR section, pipelines are controlled by means of prede�ned func-

tions stall, shift, 
ush, insert, and execute which are automatically provided by
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the LISA environment for each pipeline declared in the resource section. All these
pipeline control functions can be applied to single stages as well as whole pipelines,
for example:

PIPELINE(pipe.EX).stall();

The pipeline control function stall can be introduced in the DLX processor de-
scription to model an interlocking mechanism activated in case of data hazard
between load instructions and immediately following instructions reading the des-
tination register (see [Hennessy and Patterson 1996], pp. 152). The interlocking
mechanism and the necessary changes to the operation i type are described in
example 6.

OPERATION interlocking IN pipe.ID {

BEHAVIOR {

// check for load instruction in EX stage...

if ( ( PIPELINE(pipe.EX).ir.itype.opcode & 0x3F ) == 0x20 )

// if data hazard then stall

if ( PIPELINE(pipe.EX).ir.itype.rd == ir.itype.sr1 ) {

PIPELINE(pipe.IF).stall();

PIPELINE(pipe.ID).stall();

PIPELINE(pipe.EX).stall();

}

}

}

OPERATION i_type IN pipe.DC {

[...]

ACTIVATION { forwarding, interlocking, opcode, writeback }

}

Example 6. Forwarding and interlocking

6. COMPILED SIMULATION

The objective of compiled simulation is to reduce the simulation time. In general,
e�cient run-time reduction is achieved by accelerating frequent operations. Here,
the technique for accelerating operations is to use a priori knowledge during the
translation of target program code into simulation code for the host.
The principle of compiled simulation for DSPs corresponds to the ideas that are

already successfully implemented in the simulation of synchronous VLSI circuits
[Barzilai, Z. et al. 1987], constant propagation in high-level language compilers
[Aho et al. 1986], and that are used for static multi-processor scheduling [Lee and
Messerschmitt 1987]. Such compiled simulators for DSPs have been realized for
speci�c processor architectures [Pees et al. 1997]. Re-using the e�orts for the im-
plementation of the compiled techniques is extremely di�cult since the compiled
techniques are implemented in the so-called simulation compiler which is highly
architecture dependent.
The processing of the simulation compiler can be split into three major steps

which are depicted in �gure 5.

|The step of instruction decoding determines the instructions, operands and
modes from the respective instruction word. The pipeline structures found in
modern embedded processors make it obvious that the simulation of these opera-
tions consumes a signi�cant amount of simulation time. If we take for example the
Texas Instruments TMS320C62x DSP, most instructions actually execute within
only one pipeline stage (or cycle), whereas fetching, dispatching, and decoding
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Fig. 5. Levels of compiled simulation.

operations require six pipeline stages (or cycles).

|The step of operation sequencing determines the sequence of operations to
be executed for each instruction of the application program. This step can be
implemented in a compiled simulator by generating a two dimensional table (see
�gure 6). One dimension (ordinate) of this table represents the instructions of
the application program, the other (abscissa) contains pointers to functions that
contribute to the transition function which drives the simulator into the next
control step. In case of using the LISA language, these simulator functions cor-
respond to the behavior code of operations. We call this compiled level dynamic

scheduling because the scheduling of operations from overlapping instructions in
the pipeline is performed at run-time of the simulation.

Fig. 6. Simulation table.

|Operation instantiation and simulation loop unfolding unfolds the sim-
ulation loop that drives the simulation into the next state and instantiates the
respective simulation code for each instruction of the application program. This is
implemented in the compiled simulator by generating individual behavioral code
for each instruction of the DSP program. For cycle-accurate models of pipelined
processor architectures, all possible traces of pipeline operations at every address
of the application program have to be generated. During simulation execution,
the valid trace is executed. This compiled level is called static scheduling because
the overlapping of operations are statically scheduled at compile-time.

Between the two extremes of fully compiled and fully interpretive simulation,
partial realization of the compiled principle is possible by implementing only some
of these steps. Higher levels of compiled simulation can be achieved by investing
substantially more e�ort in simulator design and exploiting highly architecture-
speci�c properties.
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A disadvantage of the highest level of compilation is that the static schedule
cannot be changed at simulation run-time. Although there is not principal limi-
tation to simulate exceptions or interrupts, self-modifying code cannot be handled
with static scheduling. However the lower levels of compilation such as dynamic
scheduling which is based on tables that can be (partially) updated (re-compiled)
at simulation run-time if changes to program memory areas are detected. But self-
modifying code appears very infrequently in the software for embedded processors
{ predominantly in the context of memory paging or boot loading.

7. SIMULATOR IMPLEMENTATION

7.1 Retargetable Environment

The implementation of our retargetable environment currently comprises simulator,
debugger, assembler, and linker (see �gure 7. Due to the open issues in the gen-
eration of production-quality code using customized compilers for DSP processors
[Willems and �Zivojnovi�c 1996], a retargetable compiler back-end is not yet imple-
mented. In the following, we will discuss the generation of compiled simulators in
detail.

Fig. 7. Retargetable SW development tools.

In order to evaluate the applicability and e�ciency of our approach, a compiled
simulator based on dynamic scheduling is implemented in our experimental tool
suite. As shown in Figure 8, a LISA compiler takes the processor description and
translates it into two components { the processor-speci�c simulation compiler on
the one hand and the simulation library on the other hand. The library consists
of the variables representing the processor state and the transition functions which
are described in the LISA operations of the processor description. The transition
functions are implemented in C code which is generated from the behavior sections
of all LISA operations. Executing an appropriate sequence of transition functions
drives the processor into a new state. The sequences of transition functions are
de�ned in the application speci�c simulation table (see �gure 6). The generic
processor model contains the arithmetic for any bit-width and the functionality of
pipeline operations and control.
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Fig. 8. Retargetable, compiled simulation tools.

The generated source code of the simulation compiler is compiled to an executable
program that translates application programs into the simulation table which is part
of the compiled simulator. The simulation table is an evaluated representation of the
program memory which provides the particular con�guration of each instruction.
It contains the references to simulation library functions required for the respective
instruction of the application program and for each pipeline stage. In addition, the
simulation library is compiled and becomes a part of the �nal object �le.

7.2 Processor Models

We have completely described several processor models in LISA to explore the
applicability of the LISA language for modeling di�erent processor architectures
and generating the respective software development tools with a particular focus
on compiled simulation. Figure 1 lists the processors which have been successfully
described and which can be simulated in our environment. Because of the processor
complexity, the di�erent accuracy levels and signi�cant di�erences in the designer's
modeling experience, the numbers of lines required for the LISA description varies
substantially.

Table 1. LISA processor descriptions.

From the processor models described in LISA, we have chosen the Texas In-
struments TMS320C62x DSP for a complete experimental analysis of the achiev-
able simulation speed and a comparison to the current simulation technology. For
the TI C54x DSP and the ARM 7 only the simulation speed was measured. The
TMS320C62x including its memory interface was described in LISA as a cycle-based
model. Although the architecture of this processor with two pipelines consisting
of eleven pipeline stages is very complex, the LISA description was realized by one
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designer in 6 weeks. The complete translation of this model with the LISA com-
piler and the whole compilation of all architecture-speci�c components takes only
44 seconds (measured on a Sparc Ultra 5 workstation). About the same time was
spent for a description of the TMS320C54x (six-stage pipeline). As a comparison,
the custom implementation of a cycle-accurate, compiled simulator took more than
16 man-months.
The C62x model was veri�ed against the commercial simulator from Texas In-

struments sim62x by dumping traces of the processor state after each clock cycle
for a large set of application programs. The traces of both simulators were com-
pared on a cycle-by-cycle basis. For all algorithms of our test suite, the veri�cation
was successfully completed. In general, the veri�cation procedure exceeds by far
the design e�ort of the processor description. Improving this procedure will be an
important topic of our future research.

7.3 Retargetable Debugger

Interaction with the compiled simulation is provided by a target-independent debug-
ger. Program execution and the full processor state can be observed by loading the
application program code and a dynamically linked library object which contains
the compiled simulator for the application. The debugger displays are con�gured
by a dedicated table in the linked library object. The table lists for each resource
to be displayed the name, type (register, program counter, memory, etc.), size, and
bit width. Figure 9 depicts a screen-shot of the debugger.

Fig. 9. Target-independent debugger.

The debugger controls simulation execution through an API to step through the
program, run freely, handle breakpoints, and read and write registers and memory
contents. Furthermore, the debugger allows to collect detailed pro�ling data in
order to observe operation activity, use of address spaces, and resource accesses
such as registers, memories and buses.
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8. IMPLEMENTATION RESULTS

8.1 Measurement Conditions

In order to evaluate the simulation speed of our generated, compiled simulator of
the TI C6201 we used the sim62x, version 2.0 which is part of the TI's software
development tools for our reference. The measurements presented here are based
on three typical DSP algorithms with di�erent complexity, a FIR �lter kernel,
the ADPCM G.721 speech codec (encoder/decoder) pair, and the complete GSM
speech encoder and codec. The GSM codec was the largest application �lling the
complete internal (on-chip) memory. For the FIR �lter and the ADPCM codec,
di�erent implementations were investigated to explore the impact on operation
density and instruction-level parallelism on the results. Except one of the FIR
�lter implementations, the applications were compiled from C source code with
di�erent levels of optimization (-O3, -O0, non-optimized).
All measurements were made on a Sun Ultra Sparc 5 with 333 MHz and 256

MB main memory. The execution time was determined by adding user and system
time consumed by the process. For C compilation on the host the GNU C/C++
compiler, version 2.91.60 was used.

8.2 Simulation Speed

Simulation speed was quanti�ed by running an application on the respective sim-
ulator and relating the simulation time to the processed number of cycles. The
measurement results are listed in table 2.

Table 2. Measured simulation speed.

The reference simulator from TI achieved between 1.6k and 11.9k cycles/s whereas
our generated compiled simulator runs with speeds between 228k and 437k cycles/s
at the same accuracy level. These boundary values are found for two implemen-
tations of the FIR �lter kernel. For full applications { the ADPCM and the GSM
speech codecs { simulation speeds in the range of 250k to more than 300k instruc-
tions/s are achieved.
The resulting speed-up is shown in �gure 10. The compiled simulator runs with

factors between 36.8x to 170x faster than the interpretive reference.
It is remarkable that higher optimization during application compilation results

in lower speed-ups. This e�ect is particular noticeable with the C62x. It can be
explained by higher instruction-level parallelism in case of optimized code. Since
the compiled technique pro�ts from removing fetch and decoding operations, higher
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Fig. 10. Speed-up: LISA simulator vs. TI sim62x.

shares of execute stage operations reduce the freedom of the compiled technique to
achieve speed-ups. The extraordinary speed-up of the GSM codec is caused by the
low performance of the reference simulator when simulating large applications.

Table 3. Simulation speed.

The simulation speeds measured for the C54x DSP and the ARM 7 are listed in
table 3. Although the C54x has a smaller pipeline, its complex mechanisms allow no
higher simulation speed than the C62x model. However, the instruction set model
of the ARM 7 runs at more than 2 million instructions per second. Considering the
results from [Pees et al. 1997], we expect that using static simulation scheduling
would even greatly improve this result.

8.3 Simulator Compilation

The �rst step of generating a simulation is to run the simulation compiler. Since
it generates C/C++ source code, simulations have to be compiled with a C++
compiler afterwards. The required time for the simulation compiler, C++ compiler
and linker are listed in table 4 for our set of application programs.
In order to predict the required preprocessing time for a given application pro-

gram, an analysis of the compilation speed is more interesting which is displayed
in �gure 11.
Compilation speed is currently dominated by the processing time of the sim-

ulation compiler (which is an subject of future optimization). Otherwise, the



Retargetable Compiled Processor Simulation � 17

Table 4. Generation, compilation and linkage time.

Fig. 11. Simulator compilation speed.

shares of the linker can nearly be neglected. The lowest total compilation speed
of 592 instruction words/s is achieved for the smallest application { the assembly-
implemented FIR �lter. It increases for larger applications { the GSM codec { up
to 821 instruction words/s. But in general, the very high simulation speed-ups are
well worth investing short compilation time.

9. CONCLUSION AND FUTURE WORK

LISA is a language which aims at the formal description of embedded processors,
their peripherals, and interfaces. The language supports di�erent description styles
and models at various abstraction levels. This article discussed the LISA mod-
eling approach and the implementation of a retargetable environment of software
development tools including compiled processor simulators. Using the LISA pro-
cessor description signi�cantly reduces the e�orts of designing such environments
and makes processor speci�cation transparent and understandable to others than
the authors. The high simulation speed of our approach helps to improve the pro-
ductivity of processor and application designers.
Our future work will focus on an e�cient veri�cation methodology which com-
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pares LISA models against HDL descriptions. The generation of abstract models
on the instruction set level (and higher) from a given cycle-based speci�cation is
part of our current research. Another subject of the ongoing research work is the
integration of software simulators into HW/SW cosimulation environments. Fur-
thermore, the goal of the ongoing language design is to address retargetable compiler
back-ends as well.
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